RelationalAI
01 January 2014
less than a minute read
In this paper we establish that leapfrog triejoin is also worst-case optimal, up to a log factor, in the sense of NPRR
Author: Todd L. Veldhuizen. 2014.
In Proceedings of the 17th International Conference on Database Theory (ICDT ‘14).
Recent years have seen exciting developments in join algorithms.In 2008, Atserias, Grohe and Marx (henceforth AGM) proved a tight bound on the maximum result size of a full conjunctive query, given constraints on the input relation sizes. In 2012, Ngo, Porat, R«e and Rudra (henceforth NPRR) devised a join algorithm with worst-case running time proportional to the AGM bound [8]. Our commercial database system LogicBlox employs a novel join algorithm, leapfrog triejoin, which compared conspicuously well to the
NPRR algorithm in preliminary benchmarks. This spurred us to analyze the complexity of leapfrog triejoin. In this paper we establish that leapfrog triejoin is also worst-case optimal, up to a log factor, in the sense of NPRR. We improve on the results of NPRR by proving that leapfrog triejoin achieves worst-case optimality for finer-grained classes of database instances, such as those defined by constraints on projection cardinalities. We show that NPRR is not worst-case optimal for such classes, giving a counterexample where
leapfrog triejoin runs inO(nlogn)time and NPRR runs in Θ(n1.375)time. On a practical note, leapfrog triejoin can be implemented using conventional data structures such as B-trees, and extends naturally to ∃1 queries. We believe our algorithm offers a useful addition to the existing toolbox of join algorithms, being easy to absorb, simple to implement, and having a concise optimality proof.
Molham shares some history of relational databases, trends in modern cloud-native database systems, and the innovations pioneered at RelationalAI to bring deep learning with relations from idea to reality.
Read MoreThis incredible panel of experts gathered to discuss the current state of AI and machine learning workloads inside databases. The panel discussed new techniques, technologies, and recent papers that progress our understanding of what is possible. Q&A among the panel and from the audience concludes this deep and wide ranging conversation.
Read MoreThis talk explores several techniques to improve the runtime performance of machine learning by taking advantage of the underlying structure of relational data. While most data scientists use relational data in their work, the data science tooling that works with relational data is quite lacking today. Let’s explore these new techniques and see how we can drastically improve machine learning through a database-oriented lens.
Read More