RelationalAI
01 January 2018
less than a minute read
We present a defensive may-point-to analysis approach, which offers soundness even in the presence of arbitrary opaque code.
Authors: Yannis Smaragdakis, George Kastrinis´. 2018.
In Proceedings of the 32nd European Conference on Object-Oriented Programming (ECOOP ‘18).
We present a defensive may-point-to analysis approach, which offers soundness even in the presence of arbitrary opaque code: all non-empty points-to sets computed are guaranteed to be over-approximations of the sets of values arising at run time. A key design tenet of the analysis is laziness: the analysis computes points-to relationships only for variables or objects that are guaranteed to never escape into opaque code.
Molham shares some history of relational databases, trends in modern cloud-native database systems, and the innovations pioneered at RelationalAI to bring deep learning with relations from idea to reality.
Read MoreThis incredible panel of experts gathered to discuss the current state of AI and machine learning workloads inside databases. The panel discussed new techniques, technologies, and recent papers that progress our understanding of what is possible. Q&A among the panel and from the audience concludes this deep and wide ranging conversation.
Read MoreThis talk explores several techniques to improve the runtime performance of machine learning by taking advantage of the underlying structure of relational data. While most data scientists use relational data in their work, the data science tooling that works with relational data is quite lacking today. Let’s explore these new techniques and see how we can drastically improve machine learning through a database-oriented lens.
Read More