RelationalAI
01 January 2019
less than a minute read
What will be the common principles behind next-paradigm, high-productivity programming languages, and how will they change everyday program development?
Author: Yannis Smaragdakis. 2019.
In Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software (Onward! ‘19).
The dream of programming language design is to bring about orders-of-magnitude productivity improvements in software development tasks. Designers can endlessly debate on how this dream can be realized and on how close we are to its realization. Instead, I would like to focus on a question with
an answer that can be, surprisingly, clearer: what will be the common principles behind next-paradigm, high-productivity programming languages, and how will they change everyday program development? Based on my decade-plus experience of heavy-duty development in declarative languages, I speculate that certain tenets of high-productivity languages are inevitable. These include, for instance, enormous variations in performance (including automatic transformations that change the asymptotic complexity of algorithms); a radical change in a programmer’s workflow, elevating testing from a near-menial task to an act of deep understanding; and a change in the need for formal proofs.
We defined named entity recognition (NER) in the legal domain and presented our approach towards generating ground truth data. In what follows, we go over the state-of-the-art in the NER domain and elaborate on the experiments we ran and the lessons we learned.
Read MoreNamed entity recognition is a difficult challenge to solve, particularly in the legal domain. Extracting ground truth labels from long, hierarchical documents is often slow and prone to error. RelationalAI proposes a new, scalable algorithm based on the principles of data-centric AI, designed to meet this challenge and generate high-quality annotations with minimal supervision.
Read MoreMolham shares some history of relational databases, trends in modern cloud-native database systems, and the innovations pioneered at RelationalAI to bring deep learning with relations from idea to reality.
Read More