RelationalAI
02 January 2020
less than a minute read
We consider the problem of incrementally maintaining the triangle queries with arbitrary free variables under single-tuple updates to the input relations.
Authors: Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, Haozhe Zhang. 2020.
In ACM Transactions on Database Systems (TODS ‘20). Vol. 45, No. 3, Article 11. (Best of ICDT 2019 and Regular Papers).
We consider the problem of incrementally maintaining the triangle queries with arbitrary free variables under single-tuple updates to the input relations. We introduce an approach called IVM that exhibits a trade-off between the update time, the space, and the delay for the enumeration of the query result, such that the update time ranges from the square root to linear in the database size while the delay ranges from constant to linear time. IVM achieves Pareto worst-case optimality in the update-delay space conditioned on the Online Matrix-Vector Multiplication conjecture. It is strongly Pareto optimal for the triangle queries with zero or three free variables and weakly Pareto optimal for the triangle queries with one or two free variables.
We defined named entity recognition (NER) in the legal domain and presented our approach towards generating ground truth data. In what follows, we go over the state-of-the-art in the NER domain and elaborate on the experiments we ran and the lessons we learned.
Read MoreNamed entity recognition is a difficult challenge to solve, particularly in the legal domain. Extracting ground truth labels from long, hierarchical documents is often slow and prone to error. RelationalAI proposes a new, scalable algorithm based on the principles of data-centric AI, designed to meet this challenge and generate high-quality annotations with minimal supervision.
Read MoreMolham shares some history of relational databases, trends in modern cloud-native database systems, and the innovations pioneered at RelationalAI to bring deep learning with relations from idea to reality.
Read More